On the Paired-Domination Subdivision Number of a Graph

نویسندگان

چکیده

In order to increase the paired-domination number of a graph G, minimum edges that must be subdivided (where each edge in G can no more than once) is called subdivision sdγpr(G) G. It well known sdγpr(G+e) smaller or larger for some e∉E(G). this note, we show that, if an isolated-free different from mK2, then, every e∉E(G), sdγpr(G+e)≤sdγpr(G)+2Δ(G).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The convex domination subdivision number of a graph

Let $G=(V,E)$ be a simple graph. A set $Dsubseteq V$ is adominating set of $G$ if every vertex in $Vsetminus D$ has atleast one neighbor in $D$. The distance $d_G(u,v)$ between twovertices $u$ and $v$ is the length of a shortest $(u,v)$-path in$G$. An $(u,v)$-path of length $d_G(u,v)$ is called an$(u,v)$-geodesic. A set $Xsubseteq V$ is convex in $G$ ifvertices from all $(a, b)$-geodesics belon...

متن کامل

convex domination subdivision number of a graph

let $g=(v,e)$ be a simple graph. a set $dsubseteq v$ is adominating set of $g$ if every vertex in $vsetminus d$ has atleast one neighbor in $d$. the distance $d_g(u,v)$ between twovertices $u$ and $v$ is the length of a shortest $(u,v)$-path in$g$. an $(u,v)$-path of length $d_g(u,v)$ is called an$(u,v)$-geodesic. a set $xsubseteq v$ is convex in $g$ ifvertices from all $(a, b)$-geodesics belon...

متن کامل

the convex domination subdivision number of a graph

let $g=(v,e)$ be a simple graph. a set $dsubseteq v$ is adominating set of $g$ if every vertex in $vsetminus d$ has atleast one neighbor in $d$. the distance $d_g(u,v)$ between twovertices $u$ and $v$ is the length of a shortest $(u,v)$-path in$g$. an $(u,v)$-path of length $d_g(u,v)$ is called an$(u,v)$-geodesic. a set $xsubseteq v$ is convex in $g$ ifvertices from all $(a, b)$-geodesics belon...

متن کامل

roman game domination subdivision number of a graph

a {em roman dominating function} on a graph $g = (v ,e)$ is a function $f : vlongrightarrow {0, 1, 2}$ satisfying the condition that every vertex $v$ for which $f (v) = 0$ is adjacent to at least one vertex $u$ for which $f (u) = 2$. the {em weight} of a roman dominating function is the value $w(f)=sum_{vin v}f(v)$. the roman domination number of a graph $g$, denoted by $gamma_r(g)$, equals the...

متن کامل

Bounds on the restrained Roman domination number of a graph

A {em Roman dominating function} on a graph $G$ is a function$f:V(G)rightarrow {0,1,2}$ satisfying the condition that everyvertex $u$ for which $f(u) = 0$ is adjacent to at least one vertex$v$ for which $f(v) =2$. {color{blue}A {em restrained Roman dominating}function} $f$ is a {color{blue} Roman dominating function if the vertices with label 0 inducea subgraph with no isolated vertex.} The wei...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2021

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math9040439